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a b s t r a c t

A new efficient optimization method, called ‘Teaching–Learning-Based Optimization (TLBO)’, is proposed
in this paper for the optimization of mechanical design problems. This method works on the effect of
influence of a teacher on learners. Like other nature-inspired algorithms, TLBO is also a population-based
method and uses a population of solutions to proceed to the global solution. The population is considered
as a group of learners or a class of learners. The process of TLBO is divided into two parts: the first part
consists of the ‘Teacher Phase’ and the second part consists of the ‘Learner Phase’. ‘Teacher Phase’ means
learning from the teacher and ‘Learner Phase’ means learning by the interaction between learners. The
basic philosophy of the TLBO method is explained in detail. To check the effectiveness of the method it is
tested on five different constrained benchmark test functions with different characteristics, four different
benchmark mechanical design problems and six mechanical design optimization problems which have
real world applications. The effectiveness of the TLBO method is compared with the other population-
based optimization algorithms based on the best solution, average solution, convergence rate and
computational effort. Results show that TLBO is more effective and efficient than the other optimization
methods for the mechanical design optimization problems considered. This novel optimization method
can be easily extended to other engineering design optimization problems.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering design can be characterized as a goal-oriented,
constrained, decision making process to create products that
satisfy well-defined human needs. Design optimization consists
of certain goals (objective functions), a search space (feasible
solutions) and a search process (optimization methods). The
feasible solutions are the set of all designs characterized by all
possible values of the design parameters (design variables). The
optimization method searches for the optimal design from all
available feasible designs.

Mechanical design includes an optimization process in which
designers always consider certain objectives such as strength, de-
flection, weight, wear, corrosion, etc. depending on the require-
ments. However, design optimization for a complete mechanical
assembly leads to a complicated objective function with a large
number of design variables. So it is good practice to apply opti-
mization techniques for individual components or intermediate
assemblies rather than a complete assembly. For example, in an
automobile power transmission system, the optimization of the
gearbox is computationally and mathematically simpler than the
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optimization of the complete transmission system. Analytical or
numerical methods for calculating the extremes of a function have
long been applied to engineering computations. Although these
methods perform well in many practical cases, they may fail in
more complex design situations. In real design problems the num-
ber of design variables can be very large, and their influence on the
objective function to be optimized can be very complicated, with
a nonlinear character. The objective function may have many local
optima, whereas the designer is interested in the global optimum.
Such problems cannot be handled by classical methods (e.g. gra-
dient methods) that only compute local optima. So there remains
a need for efficient and effective optimization methods for me-
chanical design problems. Continuous research is being conducted
in this field and nature-inspired heuristic optimization methods
are proving to be better than deterministic methods and thus are
widely used.

There are many nature-inspired optimization algorithms, such
as the Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO),
Harmony Search (HS), the Grenade Explosion Method (GEM), etc.,
working on the principles of different natural phenomena. GA uses
the theory of Darwin based on the survival of the fittest [1,2],
PSO implements the foraging behavior of a bird for searching food
[3,4], ABC uses the foraging behavior of a honey bee [5–7], ACO
works on the behavior of an ant in searching for a destination from
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Fig. 1. Distribution of marks obtained by learners taught by two different teachers.

the source [8,9], HS works on the principle of music improvisation
in music players [10] and GEM works on the principle of the
explosion of a grenade [11]. These algorithms have been applied
to many engineering optimization problems and proved effective
in solving some specific kinds of problem.

The most commonly used evolutionary optimization technique
is the genetic algorithm (GA). However, GA provides a near optimal
solution for a complex problem having large number of variables
and constraints. This is mainly due to the difficulty in determin-
ing the optimum controlling parameters such as population size,
crossover rate and mutation rate. A change in the algorithm pa-
rameters changes the effectiveness of the algorithm. The same is
the case with PSO, which uses inertia weight, social and cognitive
parameters. Similarly, ABC requires optimum controlling parame-
ters of number of bees (employed, scout, and onlookers), limit, etc.
HS requires the harmonymemory consideration rate, pitch adjust-
ing rate, and the number of improvisations. Therefore, the efforts
must be continued to develop a newoptimization techniquewhich
is free from the algorithmparameters, i.e. no algorithmparameters
are required for the working of the algorithm. This aspect is con-
sidered in the present work.

The main motivation to develop a nature-based algorithm is its
capacity to solve different optimization problems effectively and
efficiently. It is assumed that the behavior of nature is always opti-
mum in its performance. In this paper a new optimizationmethod,
Teaching–Learning-Based Optimization (TLBO), is proposed to ob-
tain global solutions for continuous non-linear functions with less
computational effort and high consistency. The TLBO method is
based on the effect of the influence of a teacher on the output of
learners in a class. Here, output is considered in terms of results or
grades. The teacher is generally considered as a highly learned per-
sonwho shares his or her knowledgewith the learners. The quality
of a teacher affects the outcome of the learners. It is obvious that a
good teacher trains learners such that they can have better results
in terms of their marks or grades.

2. Teaching–learning-based optimization

Assume two different teachers, T1 and T2, teaching a subject
with the same content to the same merit level learners in two
different classes. Fig. 1 shows the distribution of marks obtained
by the learners of two different classes evaluated by the teachers.
Curves 1 and 2 represent themarks obtained by the learners taught
by teacher T1 and T2 respectively. A normal distribution is assumed
for the obtainedmarks, but in actual practice it can have skewness.
The normal distribution is defined as

f (X) =
1

σ
√
2π

e
−(x−µ)2

2σ2 (1)

where σ 2 is the variance,µ is themean and x is any value forwhich
the normal distribution function is required.
Fig. 2. Model for the distribution of marks obtained for a group of learners.

It is seen from Fig. 1 that curve-2 represents better results than
curve-1 and so it can be said that teacher T2 is better than teacher
T1 in terms of teaching. The main difference between both the
results is their mean (M2 for Curve-2 and M1 for Curve-1), i.e. a
good teacher produces a bettermean for the results of the learners.
Learners also learn from interaction between themselves, which
also helps in their results.

Based on the above teaching process, a mathematical model is
prepared and implemented for the optimization of a unconstrained
non-linear continuous function, thereby developing a novel opti-
mization technique called Teaching–Learning-Based Optimization
(TLBO). Consider Fig. 2, which shows a model for the marks ob-
tained for learners in a class with curve-A having mean MA. The
teacher is considered as the most knowledgeable person in the so-
ciety, so the best learner is mimicked as a teacher, which is shown
by TA in Fig. 2. The teacher tries to disseminate knowledge among
learners, which will in turn increase the knowledge level of the
whole class and help learners to get good marks or grades. So a
teacher increases the mean of the class according to his or her ca-
pability. In Fig. 2, teacher TA will try tomovemeanMA towards their
own level according to his or her capability, thereby increasing the
learners’ level to a newmeanMB. Teacher TA will put maximum ef-
fort into teaching his or her students, but students will gain knowl-
edge according to the quality of teaching delivered by a teacher and
the quality of students present in the class. The quality of the stu-
dents is judged from the mean value of the population. Teacher TA
puts effort in so as to increase the quality of the students from MA
to MB, at which stage the students require a new teacher, of supe-
rior quality than themselves, i.e. in this case the new teacher is TB.
Hence, there will be a new curve-B with new teacher TB.

Like other nature-inspired algorithms, TLBO is also a population-
basedmethod that uses a population of solutions to proceed to the
global solution. For TLBO, the population is considered as a group
of learners or a class of learners. In optimization algorithms, the
population consists of different design variables. In TLBO, differ-
ent design variables will be analogous to different subjects offered
to learners and the learners’ result is analogous to the ‘fitness’, as
in other population-based optimization techniques. The teacher is
considered as the best solution obtained so far.

The process of TLBO is divided into two parts. The first part
consists of the ‘Teacher Phase’ and the second part consists of
the ‘Learner Phase’. The ‘Teacher Phase’ means learning from
the teacher and the ‘Learner Phase’ means learning through the
interaction between learners (Fig. 3).

2.1. Teacher phase

As shown in Fig. 2, the mean of a class increases fromMA to MB
depending upon a good teacher. A good teacher is one who brings
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Fig. 3. Flow chart for Teaching–Learning-Based Optimization (TLBO).
his or her learners up to his or her level in terms of knowledge.
But in practice this is not possible and a teacher can only move
the mean of a class up to some extent depending on the capability
of the class. This follows a random process depending on many
factors.

LetMi be themean and Ti be the teacher at any iteration i. Ti will
try to move mean Mi towards its own level, so now the new mean
will be Ti designated asMnew. The solution is updated according to
the difference between the existing and the new mean given by

Difference_Meani = ri (Mnew − TFMi) (2)

where TF is a teaching factor that decides the value of mean to be
changed, and ri is a randomnumber in the range [0, 1]. The value of
TF can be either 1 or 2, which is again a heuristic step and decided
randomly with equal probability as TF = round[1 + rand(0, 1)
{2 − 1}].

This difference modifies the existing solution according to the
following expression

Xnew,i = Xold,i + Difference_Meani. (3)
2.2. Learner phase

Learners increase their knowledge by two different means: one
through input from the teacher and the other through interaction
between themselves. A learner interacts randomly with other
learners with the help of group discussions, presentations, formal
communications, etc. A learner learns something new if the other
learner hasmore knowledge than him or her. Learnermodification
is expressed as

For i = 1 : Pn
Randomly select two learners Xi and Xj, where i ≠ j
If f (Xi) < f (Xj)

Xnew,i = Xold,i + ri(Xi − Xj)

Else
Xnew,i = Xold,i + ri(Xj − Xi)

End If
End For
Accept Xnew if it gives a better function value.
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3. Implementation of TLBO for optimization

The step-wise procedure for the implementation of TLBO is
given in this section.
Step 1: Define the optimization problem and initialize the
optimization parameters.

Initialize the population size (Pn), number of generations (Gn),
number of design variables (Dn), and limits of design variables
(UL, LL).

Define the optimization problem as: Minimize f (X).
Subject to Xi ∈ xi = 1, 2, . . . ,Dn
where f (X) is the objective function, X is a vector for design

variables such that LL,i ≤ x,i ≤ UL,I .
Step 2: Initialize the population.

Generate a random population according to the population size
and number of design variables. For TLBO, the population size
indicates the number of learners and the design variables indicate
the subjects (i.e. courses) offered. This population is expressed as

population =


x1,1 x1,2 · · · x1,D
x2,1 x2,2 · · · x2,D
...

...
...

xPn,1 xPn,2 · · · xPn,D

 .

Step 3: Teacher phase.
Calculate the mean of the population column-wise, which will

give the mean for the particular subject as
M,D = [m1,m2, . . . ,mD] . (4)

The best solution will act as a teacher for that iteration
Xteacher = Xf (X)=min. (5)

The teacher will try to shift themean fromM,D towards X,teacher,
which will act as a new mean for the iteration. So,
M_new,D = Xteacher,D. (6)
The difference between two means is expressed as
Difference,D = r (M_new,D −TFM,D ) . (7)

The value of TF is selected as 1 or 2. The obtained difference is
added to the current solution to update its values using
Xnew,D = Xold,D + Difference,D . (8)
Accept Xnew if it gives better function value.
Step 4: Learner phase.

As explained above, learners increase their knowledge with the
help of their mutual interaction. The mathematical expression is
explained in Section 2.2.
Step 5: Termination criterion.

Stop if themaximumgeneration number is achieved; otherwise
repeat from Step 3.

It is seen from the above steps that no provision is made to
handle the constraints in the problem. Many types of constraint
handling technique are available in the literature, such as
incorporation of static penalties, dynamic penalties, adaptive
penalties etc. Deb’s heuristic constrained handling method [12]
is used in the proposed TLBO method. This method uses a
tournament selection operator in which two solutions are selected
and compared with each other. The following three heuristic rules
are implemented on them for the selection:
• If one solution is feasible and the other infeasible, then the

feasible solution is preferred.
• If both the solutions are feasible, then the solution having the

better objective function value is preferred.
• If both the solutions are infeasible, then the solution having the

least constraint violation is preferred.
These rules are implemented at the end of Steps 2 and 3, i.e. at the
endof the teacher phase and the learner phase. Instead of accepting
solution Xnew, if it gives better function value at the end of Steps 2
and 3, Deb’s constraint handling rules [12] are used to select Xnew
based on the three heuristic rules.
4. Comparison of TLBO with other optimization techniques

Like GA, PSO, ABC, and HS, TLBO is also a population-based
technique which implements a group of solutions to proceed
to the optimum solution. Many optimization methods require
algorithmparameters that affect the performance of the algorithm.
GA requires the crossover probability, mutation rate, and selection
method; PSO requires learning factors, the variation of weight,
and the maximum value of velocity; ABC requires the limit
value; and HS requires the harmony memory consideration rate,
pitch adjusting rate, and number of improvisations. Unlike other
optimization techniques TLBO does not require any algorithm
parameters to be tuned, thus making the implementation of TLBO
simpler. As in PSO, TLBO uses the best solution of the iteration to
change the existing solution in the population, thereby increasing
the convergence rate. TLBO does not divide the population like
ABC. As in GA, which uses selection, crossover and mutation, and
ABC,which uses employed, onlooker and scout bees, TLBOuses two
different phases, the ‘teacher phase’ and the ‘learner phase’. TLBO
uses themean value of the population to update the solution. TLBO
implements greediness to accept a good solution, as in ABC.

5. Experimental studies

Different experiments have been conducted to check the
effectiveness of TLBO against other optimization techniques.
Different examples are investigated based on benchmark test
functions, mechanical design benchmark functions and other
mechanical design problems from the literature.

5.1. Constrained benchmark test functions

Five different constrained benchmark functions with different
characteristics of objective functions and constraints (linear, non-
linear, and quadratic) were experimented upon. These benchmark
functions are given in Appendix A. The special features of these
benchmark functions are discussed in detail in the following sub-
sections.

5.1.1. Benchmark function 1
This is a quadratic minimization problem with 13 design vari-

ables and 9 linear inequality constraints. The ratio of the fea-
sible search space to the entire search space is approximately
0.0003% [13] and there are 6 active constraints at the opti-
mum point. The optimum solution for this problem is at x∗

=

(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) with objective function value
f (x∗) = −15. This problem was solved by the different optimiza-
tion methods: Multimembered Evolutionary Strategy (M-ES) [14],
Particle Evolutionary Swarm Optimization (PESO) [15], Cultural
Differential Evolution (CDE) [16], Co-evolutionary Differential Evo-
lution (CoDE) [17] and Artificial Bee Colony (ABC) [18]. The results
are shown in Table 1. The parameters for TLBO are set as: popu-
lation size = 50, maximum number of generations = 500. It can
be observed from Table 1 that TLBO finds the global optimum so-
lution with better mean and worst solutions than PESO and CDE.
Moreover TLBO requires approximately 89%, 92%, 75%, 90% and89%
fewer function evaluations than M-ES, PESO, CDE, CoDE and ABC
respectively.

5.1.2. Benchmark function 2
This is a nonlinear maximization problem with 10 design vari-

ables and one nonlinear equality constraint. The ratio of the fea-
sible search space to the entire search space is approximately
0.0000% [13] and there is 1 active constraint at the optimum point.
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Table 1
Comparison of results obtained by different optimization methods for benchmark
function 1.

Methods Best Mean Worst Function evaluations

M-ES −15 −15 −15 240000
PESO −15 −14.710 −13 350000
CDE −15 −14.999996 −14.999993 100100
CoDE −15 −15 −15 248000
ABC −15 −15 −15 240000
TLBO −15 −15 −15 25000

Table 2
Comparison of results obtained by different optimization methods for benchmark
function 2.

Methods Best Mean Worst Function evaluations

M-ES 1 1 1 240000
PESO 0.993930 0.764813 0.464 350000
CDE 0.995413 0.788635 0.639920 100100
ABC 1 1 1 240000
TLBO 1 1 1 100000

Table 3
Comparison of results obtained by different optimization methods for benchmark
function 3.

Methods Best Mean Worst Function evaluations

M-ES 680.632 680.643 680.719 240000
PESO 680.630 680.630 680.631 350000
CDE 680.63006 680.63006 680.6301 100100
CoDE 680.771 681.503 685.144 248000
ABC 680.634 680.640 680.653 240000
TLBO 680.630 680.633 680.638 100000

The global maximum is at x∗
= (1/

√
n, 1/

√
n, 1/

√
n, . . .) with

objective function value f (x∗) = 1. The equality constraint is con-
verted into inequality constraints as |h| ≤ ε, where ε = 0.001.
This problem was solved by the different optimization methods:
Multimembered Evolutionary Strategy (M-ES) [14], Particle Evolu-
tionary SwarmOptimization (PESO) [15], Cultural Differential Evo-
lution (CDE) [16], and Artificial Bee Colony (ABC) [18]. The results
are shown in Table 2. The parameters for TLBO are set as: popu-
lation size = 50, maximum number of generations = 2000. It can
be observed from Table 2 that TLBO finds the global optimum so-
lution with better best, mean and worst solutions than PESO and
CDE. Moreover, the results for TLBO are same as the results for
M-ES and ABC, but TLBO requires approximately 58% fewer func-
tion evaluations than M-ES and ABC.

5.1.3. Benchmark function 3
This is a nonlinear minimization problem with 7 design vari-

ables and 4 nonlinear inequality constraints. The ratio of the fea-
sible search space to the entire search space is approximately
0.5256% [13] and there are 2 active constraints at the optimum
point. The optimum solution is at x∗

= (2.330499, 1.951372,
−0.4775414, 4.365726, −0.6244870, 1.1038131, 1.594227)with
objective function value f (x∗) = 680.6300573. This problem
was solved by the different optimization methods: Multimem-
bered Evolutionary Strategy (M-ES) [14], Particle Evolutionary
Swarm Optimization (PESO) [15], Cultural Differential Evolution
(CDE) [16], Co-evolutionary Differential Evolution (CoDE) [17] and
Artificial Bee Colony (ABC) [18]. The results are shown in Table 3.
The parameters for TLBO are set as: population size = 50, max-
imum number of generations = 2000. It can be observed from
Table 3 that TLBO finds the global optimum solution with better
best, mean and worst solutions than M-ES, CoDE and ABC. More-
over, the results for TLBO are the same as the results for PESO and
CDE, but TLBO requires approximately 71%, fewer function evalu-
ations than PESO and nearly same as CDE.
Table 4
Comparison of results obtained by different optimization methods for benchmark
function 4.

Methods Best Mean Worst Function evaluations

M-ES 7051.903 7253.047 7638.366 240000
PESO 7049.38 7205.5 7894.812 350000
CDE 7049.2481 7049.2483 7049.2485 100100
ABC 7053.904 7224.407 7604.132 240000
TLBO 7049.2481 7083.6732 7224.4968 100000

Table 5
Comparison of results obtained by different optimization methods for benchmark
function 5.

Methods Best Mean Worst Function evaluations

M-ES 1 1 1 240000
PESO 1 0.998875 0.994 350000
CDE 1 1 1 100100
CoDE 1 1 1 248000
ABC 1 1 1 240000
TLBO 1 1 1 50000

5.1.4. Benchmark function 4
This is a linear minimization problem with 8 design variables

and 3 nonlinear inequality and 3 linear inequality constraints. The
ratio of feasible search space to entire search space is approx-
imately 0.0005% [13] and there are 3 active constraints at the
optimum point. The optimum solution is at x∗

= (579.3066,
1359.9709, 5109.9707, 182.0177, 295.601, 217.982, 286.165,
395.6012) with objective function value f (x∗) = 7049.248021.
The equality constraint is converted into inequality constraints
as |h| ≤ ε where ε = 0.000001. This problem was solved by
the different optimizationmethods: Multimembered Evolutionary
Strategy (M-ES) [14], Particle Evolutionary Swarm Optimization
(PESO) [15], Cultural Differential Evolution (CDE) [16], and Artifi-
cial Bee Colony (ABC) [18]. The results are shown in Table 4. The
parameters for TLBO are set as: population size = 50, maximum
number of generations= 2000. It can be observed fromTable 4 that
TLBO finds the global optimum solutionwith better best, mean and
worst solutions than M-ES, PESO and ABC. Moreover, the results
from TLBO are the same as the results from CDE for the best so-
lution, but CDE shows better results than TLBO for the mean and
worst solutions.

5.1.5. Benchmark function 5
This is a quadratic maximization problem with 3 design vari-

ables and 93
= 729 nonlinear inequality constraints. The ratio

of feasible search space to entire search space is approximately
4.779% [13] and there are no active constraints at the optimum
point. The optimum solution is at x∗

= (5, 5, 5) with objective
function value f (x∗) = 1. This problem was solved by the differ-
ent optimization methods: Multimembered Evolutionary Strategy
(M-ES) [14], Particle Evolutionary SwarmOptimization (PESO) [15],
Cultural Differential Evolution (CDE) [16], and Artificial Bee Colony
(ABC) [18]. The results are shown in Table 5. The parameters for
TLBO are set as: population size = 50, maximum number of gen-
erations = 1000. It can be observed from Table 5 that TLBO finds
the global optimum solutionwith bettermean andworst solutions
than PESO.Moreover, the results from TLBO are the same as the re-
sults ofM-ES, CDE, CoDE andABC, but TLBO requires approximately
79%, 50%, 79%, and 79% fewer function evaluations thanM-ES, CDE,
CoDE and ABC respectively.

5.2. Constrained benchmark mechanical design problems

Four different constrained benchmark mechanical design
problems with different characteristics of objective function and
constraints (linear and nonlinear) were experimented upon. These
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Table 6
Comparison of results obtained by different optimization methods for benchmark mechanical design problems 1–4.

Problem (µ + λ)-ES [19] UPSO [20] CPSO [21] CoDE [17] PSO-DE [13] ABC [22] TLBO

Welded Best 1.724852 1.92199 1.728 1.73346 1.72485 1.724852 1.724852
Beam Mean 1.777692 2.83721 1.74883 1.76815 1.72485 1.741913 1.72844676

Evaluations 30000 100000 200000 240000 33000 30000 10000
Pressure Best 6059.7016 6544.27 6061.077 6059.734 6059.714 6059.714 6059.714335
Vessel Mean 6379.938 9032.55 6147.1332 6085.23 6059.714 6245.308 6059.71434

Evaluations 30000 100000 200000 240000 42100 30000 10000
Tension Best 0.012689 0.01312 0.012674 0.01267 0.012665 0.012665 0.012665
Compression Mean 0.013165 0.02294 0.01273 0.012703 0.012665 0.012709 0.01266576
Spring Evaluations 30000 100000 200000 240000 24950 30000 10000
Gear Best 2996.348 NA NA NA 2996.348 2997.058 2996.34817
train Mean 2996.348 NA NA NA 2996.348 2997.058 2996.34817

Evaluations 30000 NA NA NA 54350 30000 10000

The data in bold indicate the best solution.
Table 7
Variation of f (a) with a.

a ≤1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 ≥2.8
f (a) 1 0.85 0.77 0.71 0.66 0.63 0.6 0.58 0.56 0.55 0.53 0.52 0.51 0.51 0.5
benchmark design problems are given in Appendix B. Some of the
problems have mixed discrete-continuous design variables. These
problems are used by many researchers to test the performance of
different algorithms. All these problems are discussed in detail in
the following sub-sections.

5.2.1. Design of a pressure vessel
The objective is to minimize the total cost of a pressure

vessel considering the cost of material, forming and welding. This
problem has a nonlinear objective function with 3 linear and
one nonlinear inequality constraints and two discrete and two
continuous design variables.

5.2.2. Design of tension/compression spring
The objective is to minimize the weight of a tension/compre-

ssion spring subjected to one linear and three nonlinear inequality
constraints with three continuous design variables.

5.2.3. Design of welded beam
The objective is to design a welded beam for minimum cost.

There are four continuous design variables with two linear and five
nonlinear inequality constraints.

5.2.4. Design of gear train
The objective is to minimize the weight of a gear train with one

discrete and six continuous design variables. There are 4 linear and
7 nonlinear inequality constraints. The peculiarity of this problem
is that there are four active constraints at the best known feasible
solution.

The aforementioned mechanical benchmark problems have
been attempted by many researchers, but in this paper the
effectiveness of the results of TLBO is compared with the results of
research published since 2004. As PSO, DE, ES and ABC are well-
known optimization algorithms, many researchers have tried to
enhance the performance of the basic algorithms by modifications
between the years 2005 and 2010. Efforts are ongoing to
modify or hybridize these well-known algorithms to increase
their effectiveness and efficiency. The aforementioned mechanical
design problemswere attempted by (µ+λ)-Evolutionary Strategy
(ES) [19], Unified Particle Swarm Optimization (UPSO) [20],
Co-evolutionary Particle Swarm Optimization (CPSO) [21], Co-
evolutionary Differential Evolution (CoDE) [17], Hybrid PSO-
DE [13] and Artificial Bee Colony (ABC) [22].
All optimization algorithms require tuning of different algo-
rithm parameters for their proper functioning. It should be noted
that the selection of the algorithm parameters plays a very impor-
tant role in the performance of an optimization algorithm. A small
change in algorithm parametersmay result in a large change in the
performance of the algorithm. TLBO overcomes such difficulties as
tuning and selecting the proper algorithm parameters. TLBOworks
such that it does not require any algorithm parameters. TLBO only
requires the population size andmaximum number of generations
and these are set as 50 and 200 respectively.

TLBO is compared with the aforementioned methods for the
best solution, mean solution and maximum number of function
evaluations required to find the optimum solution. For TLBO, 100
independent runs are carried out to check the performance of the
algorithm. The results for the comparison of all the methods are
shown in Table 6. It is observed form the results that TLBO give the
best solution for all the problems except for the pressure vessel
problem, for which (µ + λ)-ES has shown better performance.
However, for the pressure vessel problem the average performance
of TLBO is better than (µ + λ)-ES. The average performance of
TLBO and PSO-DE is same for all the problems, except for welded
beam problem for which PSO-DE is better. TLBO requires 66%,
70% and 66% fewer function evaluations than (µ + λ)-ES, PSO-
DE and ABC respectively. So it can be concluded that TLBO require
fewer function evaluations and that it also requires no algorithm
parameters.

5.3. Constrained mechanical design problems from literature

Several further mechanical design problems were considered,
including the Belleville spring, rolling bearing, thrust bearing,
multiplate clutch disc brake, welded stiffened shells and robot
gripper. All the considered problems have different natures of ob-
jective functions, constraints and design variables. The multiple
disc clutch brake is a minimization problem with all discrete vari-
ables. The robot gripper problem has an objective function such
that it has to select the minimum and maximum from the set of
available values of objective function and it varies according to the
harmonic function. The step-cone pulley is a minimization prob-
lem with three equality constraints and 8 inequality constraints.
The hydrodynamic thrust bearing is a minimization problem with
a logarithmically varying objective function and constraints. The
rolling element bearing is amaximization problemwithmixed dis-
crete–continuous type design variables. The Belleville spring prob-
lem is a minimization problem in which one parameter existing in
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Fig. 4. Multiple disc clutch brake [23].

the constraints is to be selected according to the design variable
ratios. All the problems are taken from the available literature, but
the mathematical formulation is repeated to give completeness to
this paper. The details are given in Appendix C.

5.3.1. Multiple disc clutch brake
This problem is taken from [23]. Fig. 4 shows a multiple disc

clutch brake. The objective is to minimize the mass of the multiple
disc clutch brake using five discrete variables: inner radius (ri =

60, 61, 62, . . . , 80), outer radius (ro = 90, 91, 92, . . . , 110),
thickness of discs (t = 1, 1.5, 2, 2.5, 3), actuating force (F =

600, 610, 620, . . . , 1000) and number of friction surfaces (Z =

2, 3, 4, 5, 6, 7, 8, 9).

5.3.2. Robot gripper
The objective is to minimize the difference between the

maximum and minimum force applied by the gripper for the
range of gripper end displacements. There are 7 continuous design
variables (a, b, c, d, e, f , δ), as shown in Fig. 5. There are six
different constraints associated with the robot gripper problem.

5.3.3. Step-cone pulley
The objective is to design a 4 step-cone pulley with minimum

weight using 5 design variables, consisting of four design variables
for the diameters of each step, with the fifth being the width of
the pulley. Fig. 6 shows a step-cone pulley. It is assumed in this
example that the widths of the cone pulley and belt are the same.
There are 11 constraints, out of which 3 are equality constraints
and the remainder are inequality constraints. The constraints are
to assure the same belt length for all the steps, tension ratios,
and power transmitted by the belt. The step pulley is designed to
transmit at least 0.75 hp (0.75∗745.6998W), with an input speed
of 350 rpm and output speeds of 750, 450, 250 and 150 rpm. The
problem is taken from [25].

5.3.4. Hydrodynamic thrust bearing
The objective is to minimize the power loss. There are four

design variables: bearing step radius (R), recess radius (Ro), oil
viscosity (µ) and flow rate (Q ). Fig. 7 shows a hydrodynamic
thrust bearing. Seven different constraints are associated with the
problem, based on load carrying capacity, inlet oil pressure, oil
temperature rise, oil film thickness and physical constraints.

5.3.5. Rolling element bearing
The objective is tomaximize the dynamic load carrying capacity

of a rolling element bearing. A detailed discussion of the problem
is given in [27]. The design variables are ball diameter (Db), pitch
diameter (Dm), inner and outer raceway curvature coefficients (fi
and fo), and number of balls (Z), as shown in Fig. 8. Moreover, there
are many parameters such as KDmin, KDmax, ε, e, and ζ that only
appear in constraints and indirectly affect the internal geometry.
Therefore, a total of 10 design variables is taken, out of which Z
is the discrete design variable and the remainder are continuous
design variables. Constraints are imposed based on kinematic and
manufacturing considerations.

5.3.6. Belleville spring
The objective is to design a Belleville spring having minimum

weight and satisfying a number of constraints. The problem has
4 design variables: external diameter of the spring (De), internal
diameter of the spring (Di), thickness of the spring (t), and the
height (h) of the spring, as shown in Fig. 9. Of these design
variables, t is a discrete variable and the remainder are continuous
variables. The constraints are for compressive stress, deflection,
height to deflection, height to maximum height, outer diameter,
inner diameter, and slope.

5.3.7. Results of mechanical design problems from literature
All the problems are attempted in this work using TLBO and

ABC with different population sizes and the maximum number
of generations decided based on several trials. For ABC the
modification rate is taken as 0.9 and the limit as ‘population size ∗

number of designvariables ∗ 5’. The results were obtained for
100 independent runs. Results are compared based on the best,
mean and worst solutions in a predefined number of function
evaluations, and the success rate of the algorithm. An algorithm is
said to be successful if it finds the best optimum value. Moreover,
comparison is done for the convergence rate of the algorithm.
Here, graphs are obtained for the function value with number
of generations. As TLBO and ABC are heuristic methods, function
Fig. 5. Robot gripper [24].
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Table 8
Comparison of results for mechanical design problems obtained using the TLBO and ABC algorithms for examples 1–6.

TLBO ABC
Best Mean Worst SR Best Mean Worst SR

Multiple disc clutch brake 0.313657 0.3271662 0.392071 0.67 0.313657 0.324751 0.352864 0.54
Robot gripper 4.247644 4.93770095 8.141973 0.56 4.247644 5.086611 6.784631 0.07
Step-cone pulley 16.63451 24.0113577 74.022951 0.34 16.634655 36.0995 145.4705 0.06
Hydrostatic thrust bearing 1625.443 1797.70798 2096.80127 0.19 1625.44276 1861.554 2144.836 0.05
Rolling element bearing 81859.74 81438.987 80807.8551 0.66 81859.7416 81496 78897.81 0.69
Belleville spring 1.979675 1.97968745 1.979757 0.45 1.979675 1.995475 2.104297 0.07
Fig. 6. Step-cone pulley [25].

Fig. 7. Hydrodynamic thrust bearing [26].

values to be plotted in the convergence graphs are obtained
by averaging the function values for each generation over 20
independent runs.

The problemof themultiple clutch brakewas also attempted by
Deb and Srinivasan [28] usingNSGA-II. The value ofminimummass
reported by them is 0.4704 kg, with ri = 70 mm, ro = 90 mm, t =

1.5 mm, F = 1000 N and Z = 3. The population size and number
of generations are kept as 20 and 30 for both TLBO and ABC. The
best value of the mass of the multiple disc clutch brake reported
Fig. 8. Rolling element bearing [27].

Fig. 9. Belleville spring [26].

by using TLBO is 0.313 kg, which is better than the previously
published results, with ri = 70 mm, ro = 90 mm, t = 1 mm,
F = 810 N and Z = 3. It is observed from Table 8 that for the
multiple disc clutch brake both ABC and TLBO give better results
than those available in the literature. Themean andworst solutions
obtained by both the algorithms are almost samewith ABC slightly
better. It is also observed that the success rate of TLBO is 24.1%
higher than that of ABC, whichmeans that TLBO finds the optimum
solution on more occasions than ABC. From Fig. 10 it can be seen
that the convergence rate of TLBO is faster than ABC in earlier
generations, but with an increase in the number of generations the
convergence of both algorithms becomes nearly the same.

The robot gripper problemwas attempted by Osyczka et al. [24]
using GA with a population size of 400 and the number of
generations as 400, i.e. requiring 160000 function evaluations. The
value of the objective function was 5.02 N with a = 150, b =

131.1, c = 196.5, e = 12.94, f = 133.80, l = 175 and δ = 2.60.
Now the same problem is attempted using TLBO and ABC with
a population size of 50 and maximum number of generations as
500, requiring 25000 function evaluations. The best obtained value
using TLBO is 4.2476 N with a = 150, b = 150, c = 200, e =

0, f = 150, l = 100 and δ = 2.339539. It is observed from Table 8
that the mean and worst values obtained using TLBO are better
than ABC. Also the success rate of TLBO is approximately 700%
higher than ABC. From Fig. 11 it can be seen that the convergence
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Fig. 10. Convergence plots for the multiple disc clutch brake using the TLBO and
ABC algorithms (function value = weight of multiple disc clutch brake (kg)).

Fig. 11. Convergence plots for the robot gripper using the TLBO andABC algorithms
(function value = gripping force (N)).

Fig. 12. Convergence plots for the step-cone pulley using the TLBO and ABC
algorithms (function value = weight of step-cone pulley (kg)).

of TLBO and ABC is almost the same in the initial generations, but
as the number of generations increase the convergence of TLBO is
better than ABC.

The step-cone pulley problem is taken from [25]. This is an
interesting problem as there are 3 equality constraints along with
inequality constraints, thus imposing complexity on the problem.
This problem is attempted using TLBO andABCwith the population
size of 50 and the number of generations as 300. The best obtained
value of objective function using TLBO is 16.63451 kg with d1 =

40 mm, d2 = 54.7643 mm, d3 = 73.01318 mm, d4 =

88.42842 mm and w = 85.98624 mm. It is observed from Table 8
that TLBO gives better results than ABC for the best, mean and
worst solutions.Moreover, TLBO has an approximately 470% better
success rate than ABC. From Fig. 12 it is clear that the convergence
rate of TLBO is considerably better than ABC for the step-cone
pulley design problem.

The problem of the hydrostatic bearing was attempted by
He et al. [29] using improved PSO, by Coello [26] using new
constraint handling techniques, and by Deb and Goyal [30] using
GeneAS. The best reported results are by He et al. [29] with
the function value of 1632.2149 and Ro = 5.56868685, Ri =

5.389175395, µ = 5.40213310 and Q = 2.30154678 using
Fig. 13. Convergence plots for the hydrostatic thrust bearing using the TLBO and
ABC algorithms (function value = power loss (ft lb/s)).

Fig. 14. Convergence plots for the rolling element bearing using the TLBO and ABC
algorithms (function value = dynamic load carrying capacity (N)).

90000 function evaluations. This problem is attempted using
TLBO and ABC with the population size of 50 and the number
of generations as 500, requiring 25000 function evaluations.
The best reported values are: function value = 1625.442764,
Ro = 5.9557805026154158, Ri = 5.3890130519416788, µ =

0.0000053586972670629985,Q = 2.2696559728097379. This
is a very interesting optimization problem because, out of 7
constraints, 6 are active constraints considering an accuracy of 3
decimal places, and all the design variables are highly sensitive. The
accuracy of Ro, Ri,µ and Q is required up to 9, 9, 15 and 10 decimal
places respectively. Considering Ro up to 8 decimal places violates
constraints 2 and 7, Ri up to 8 decimal places violates constraint
1, µ up to 14 decimal places violates constraints 2, 3 and 7, and Q
up to 9 decimal places violates constraint 1. So this example can
be considered as a very good mechanical benchmark problem. As
seen from Table 8, TLBO produces better results than ABC for the
mean and worst solutions. Moreover, although the success rate of
TLBO is only 0.19, it is still 280% better than ABC. Convergence rate
of TLBO andABC fromFig. 13 is nearly same but ability to findmean
best solution is better for TLBO than ABC.

The problem of the rolling element bearing was presented by
Gupta et al. [27]. The best reported function value is 81843.3 with
the design variables x = (125.7171, 21.423, 11, 0.515, 0.515,
0.4159, 0.651, 0.300043, 0.0223, 0.751). The number of function
evaluations used by Gupta et al. [27] was 225000. Here the
problem is attempted using TLBO and ABC with a population size
of 50 and the number of generations as 200. It is observed from
Table 8 that the performance of TLBO and ABC is nearly same, with
just a 4.5% worse success rate for TLBO than for ABC. From Fig. 14
it is observed that the convergence rate of ABC and TLBO is nearly
same with a slightly higher mean searching capability for TLBO.

The problem for the Belleville spring was attempted by Coello
[26] using a new constraint handling technique and Deb and
Goyal [30] using GeneAS. The best function value reported by
Coello [26] was 2.121964, with design variables x = (0.208,
0.2, 8751, 11.067). Here the same problem is attempted using
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Table 9
Values of objective functions, design variables and constraints for mechanical design problems 1–6.

Multiple disc clutch brake Robot gripper Step-cone pulley Hydrostatic thrust bearing Rolling element bearing Belleville spring

x1 70 150 40 5.95578050261541 21.42559 0.204143
x2 90 150 54.7643 5.38901305194167 125.7191 0.2
x3 1 200 73.01318 0.0000053586972670629 11 10.03047
x4 810 0 88.42842 2.26965597280973 0.515 12.01
x5 3 150 85.98624 – 0.515 –
x6 – 100 – – 0.424266 –
x7 – 2.339539113 – – 0.633948 –
x8 – – – – 0.3 –
x9 – – – – 0.068858 –
x10 – – – – 0.799498 –

f (x) 0.313656611 4.247643634 16.63451 1625.4427649821 81859.74 1.979675

g1 0 28.09283911 5.14E−09 0.0001374735 0 1.77E−06
g2 24 21.90716089 1E−09 0.0000010103 13.15257 7.46E−08
g3 0.91942781 33.64959994 1E−10 0.0000000210 1.5252 5.8E−11
g4 9830.371094 16.35040006 0.986864 0.0003243625 0.719056 1.595857
g5 7894.69659 79999.998 0.99736 0.5667674507 16.49544 2.35E−09
g6 0.702013203 9.8E−11 1.010154 0.0009963614 0 1.979527
g7 37706.25 0.00001 1.020592 0.0000090762 0 0.198966
g8 14.2979868 – 698.5773 – 2.559363 –
g9 – – 475.8272 – 0 –
g10 – – 209.0369 – 0 –
g11 – – 1.05E−06 – – –
Fig. 15. Convergence plots for the Belleville spring using the TLBO and ABC
algorithms (function value = weight of Belleville spring (lb)).

TLBO and ABC with a population size of 50 and the number of gen-
erations as 300. It is observed from Table 8 that TLBO outperforms
ABC for the mean and the worst solutions. Also, TLBO has an 540%
higher success rate than ABC for the Belleville spring problem.
As shown in Fig. 15, the convergence rate of ABC and TLBO is nearly
samewith slight dominance of TLBO over ABC. Results showing the
function value, design variables and constraint values are shown in
Table 9. It is to be noted that the values reported in Table 9 are the
best values obtained so far.

6. Conclusions

A novel optimization method, TLBO, is presented based on the
philosophy of the teaching–learning process and its performance
is checked by experimenting with different benchmark problems
with different characteristics. The effectiveness of TLBO is also
checked for different performance criteria, such as success rate,
mean solution, average number of function evaluations required,
convergence rate, etc. The results show the better performance
of TLBO over other nature-inspired optimization methods for the
constrainedbenchmark functions andmechanical designproblems
considered. Also, TLBO shows a better performance with less
computational effort for large scale problems, i.e. problems of
a high dimensionality. This novel method can be used for the
optimization of engineering design applications.
Appendix A. Constrained benchmark functions

A.1. Benchmark function 1

Min f (x) = 5
4−

i=1

xi − 5
4−

i=1

x2i −

13−
i=5

xi

S.T. g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4(x) = −8x1 + x10 ≤ 0, g5(x) = −8x2 + x11 ≤ 0,
g6(x) = −8x3 + x12 ≤ 0,
g7(x) = −2x4 − x5 + x10 ≤ 0, g8(x) = −2x6 − x7 + x11 ≤ 0,
g9(x) = −2x8 − x9 + x12 ≤ 0,
0 ≤ xi ≤ 1, i = 1, 2, 3, . . . , 9,
0 ≤ xi ≤ 100, i = 10, 11, 12, 0 ≤ xi ≤ 1, i = 13.

A.2. Benchmark function 2

Max f (x) = (
√
n)n

n∏
i=1

xi

S.T. h(x) =

4−
i=1

x2i − 1 = 0

where
n = 10 and 0 ≤ xi ≤ 10 (i = 1, 2, . . . , n).

A.3. Benchmark function 3

Min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7
S.T. g1(x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0,

g2(x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0,

g3(x) = −196 + 23x+

1 x
2
2 + 6x26 − 8x7 ≤ 0,

g4(x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0,
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where
−10 ≤ xi ≤ 10 (i = 1, 2, . . . , 7).

A.4. Benchmark function 4

Min f (x) = x1 + x2 + x3
S.T. g1(x) = −1 + 0.0025(x4 + x6) ≤ 0,
g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0,
g3(x) = −1 + 0.01(x8 − x5) ≤ 0,
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83 333.333 ≤ 0,
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,
g6(x) = −x3x8 + 1250 000 + x3x5 − 2500x5 ≤ 0,
where
−100 ≤ x1 ≤ 10 000, −1000 ≤ xi ≤ 10 000 (i = 2, 3),
−100 ≤ xi ≤ 10 000 (i = 4, 5, . . . , 8).

A.5. Benchmark function 5

Max f (x) =
100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
S.T. g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 ≤ 0
where
0 ≤ xi ≤ 10 (i = 1, 2, 3)
p, q, r = 1, 2, 3, . . . , 9.

Appendix B. Constrained benchmark mechanical design prob-
lems

B.1. Design of pressure vessel

Minimize:
f (x) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x21x4 + 19.84x21x3
Subject to:
g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 −
4
3
πx33 + 1296 000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,
where
0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

B.2. Design of tension/compression spring

Minimize:
f (x) = (N + 2)Dd2.
Subject to;

g1(x) = 1 −
D3N

71785d4
≤ 0,

g2(x) =
4D2

− dD
12566(Dd3 − d4)

+
1

5108d2
− 1 ≤ 0,

g3(x) = 1 −
140.45d
D2N

≤ 0,

g4(x) =
D + d
1.5

− 1 ≤ 0,

where
0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
B.3. Design of welded beam design

Minimize:

f (x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2).

Subject to:

g1(x) = τ(x) − τmax ≤ 0,
g2(x) = σ(x) − σmax ≤ 0, g3(x) = x1 − x4 ≤ 0,
g4(x) = 0.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,
g5(x) = 0.125 − x1 ≤ 0,
g6(x) = δ(x) − δmax ≤ 0, g7(x) = P − Pc(x) ≤ 0,

where

τ(x) =


(τ ′)2 + 2τ ′τ ′′

x2
2R

+ (τ ′′)2,

τ ′
=

P
√
2x1x2

, τ ′′
=

MR
J

, M = P

L +

x2
2


,

R =


x22
4

+


x1 + x3

2

2

,

J = 2


√
2x1x2


x22
12

+


x1 + x3

2

2


, σ (x) =
6PL
x4x23

,

δ(x) =
4PL3

Ex33x4
,

Pc(x) =
4.013E


x23x

6
4

36

L2


1 −

x3
2L


E
4G


,

P = 6000 lb, L = 14 in., E = 30e6 psi,
G = 12e6 psi, τmax = 13 600 psi, σmax = 30 000 psi,
δmax = 0.25 in.

0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0,
0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0.

B.4. Design of gear train

Minimize:

f (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3 − 43.0934) − 1.508x1

× (x26 + x27) + 7.4777(x36 + x37) + 0.7854(x4x26 + x5x27)

Subject to:

g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5
x1x22x

2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =


745x4
x2x3

2
+ 16.9e6

110x36
− 1 ≤ 0,

g6(x) =


745x5
x2x3

2
+ 157.5e6

85x37
− 1 ≤ 0,

g7(x) =
x2x3
40

− 1 ≤ 0, g8(x) =
5x2
x1

− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,
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g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

where

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

Appendix C. Constrained mechanical design problems

C.1. Multiple disc clutch brake design

Min f (x) = π(r20 − r2i )t(Z + 1)ρ

Subject to:

g1(x) = ro − ri − 1r ≥ 0,
g2(x) = lmax − (Z + 1)(t + δ) ≥ 0, g3(x) = pmax − prz ≥ 0,
g4(x) = pmaxvsrmax − przvsr ≥ 0,
g5(x) = vsrmax − vsr ≥ 0, g6(x) = Tmax − T ≥ 0,
g7(x) = Mh − sMs ≥ 0, g8(x) = T ≥ 0,

where

Mh =
2
3
µFZ

r3o − r3i
r2o − r2i

, prz =
F

π(r2o − r2i )
,

vsr =
2πn(r3o − r3i )
90(r2o − r2i )

, T =
Izπn

30(Mh + Mf )
.

1r = 20 mm, tmax = 3 mm, tmin = 1.5 mm, lmax = 30 mm,
Zmax = 10, vsrmax = 10m/s, µ = 0.5, s = 1.5,Ms = 40Nm,Mf =

3 N m, n = 250 rpm, pmax = 1 MPa, Iz = 55 kg mm2, Tmax = 15 s,
Fmax = 1000 N, rimin = 55 mm, romax = 110 mm.

C.2. Robot gripper

Minimize f (x) = max
z

Fk(x, z) − min
z

Fk(x, z)

Subject to:

g1(x) = Ymin − y(x, Zmax) ≥ 0,
g2(x) = y(x, Zmax) ≥ 0, g3(x) = y(x, 0) − Ymax ≥ 0,
g4(x) = YG − y(x, 0) ≥ 0, g5(x) = (a + b)2 − l2 − e2 ≥ 0,
g6(x) = (l − Zmax)

2
+ (a − e)2 − b2 ≥ 0,

g7(x) = l − Zmax ≥ 0,

where

g =


(l − z)2 + e2, α = arccos


a2 + g2

− b2

2ag


+ φ,

β = arccos

b2 + g2

− a2

2bg


− φ,

φ = arctan


e
l − z


+ φ, Fk =


Pb sin(α + β)

2c cos(α)


,

y(x, z) = 2(e + f + c sin(β + δ)).

Ymin = 50, Ymax = 100,
YG = 150, Zmax = 100, P = 100,
10 ≤ a, b, f ≤ 150, 100 ≤ c ≤ 200,
0 ≤ e ≤ 50, 100 ≤ l ≤ 300, 1 ≤ δ ≤ 3.14.
C.3. Step-cone pulley

Minimize f (x) = ρw


d21


1 +


N1

N

2


+ d22


1 +


N2

N

2


+ d23


1 +


N3

N

2


+ d24


1 +


N4

N

2


Subject to:

h1(x) = C1 − C2 = 0, h2(x) = C1 − C3 = 0,
h3(x) = C1 − C4 = 0,
g1,2,3,4(x) = Ri ≥ 2, g5,6,7,8(x) = Pi ≥ (0.75 ∗ 745.6998),

where
Ci indicates the length of the belt to obtain speedNi and is given

by

Ci =
πdi
2


1 +

Ni

N


+


Ni
N − 1

2
4a

+ 2a i = (1, 2, 3, 4).

Ri is the tension ratio and is given by

Ri = exp
[
µ


π − 2 sin−1


Ni

N
− 1


di
2a

]
i = (1, 2, 3, 4).

Pi is the power transmitted at each step

Pi = stw
[
1 − exp

[
−µ


π − 2 sin−1


Ni

N
− 1


di
2a

]]
πdiNi

60
i = (1, 2, 3, 4).

ρ = 7200 kg/m3, a = 3 m, µ = 0.35, s = 1.75 MPa, t = 8 mm.

C.4. Hydrodynamic thrust bearing design

Minimize: f (x) =
QPo
0.7

+ Ef

Subject to:

g1(x) = W − Ws ≥ 0, g2(x) = Pmax − Po ≥ 0,
g3(x) = 1Tmax − 1T ≥ 0, g4(x) = h − hmin ≥ 0,

g5(x) = R − Ro ≥ 0, g6(x) = 0.001 −
γ

gPo


Q

2πRh


≥ 0,

g7(x) = 5000 −
W

π(R2 − R2
o)

≥ 0,

where

W =
πPo
2

R2
− R2

o

ln R
Ro

, Po =
6µQ
πh3

ln
R
Ro

,

Ef = 9336Qγ C1T , 1T = 2(10P
− 560)

P =
log10 log10(8.122e6µ + 0.8) − C1

n
,

h =


2πN
60

2 2πµ

Ef


R4

4
−

R4
o

4


where,

γ = 0.0307, C = 0.5, n = −3.55, C1 = 10.04,
Ws = 101 000, Pmax = 1000, 1Tmax = 50,
hmin = 0.001, g = 386.4, N = 750.
1 ≤ R, Ro,Q ≤ 16, 1e − 6 ≤ µ ≤ 16e − 6.
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C.5. Rolling element bearing

Maximize Cd = fcZ2/3D1.8
b if Db ≤ 25.4 mm

Cd = 3.647fcZ2/3D1.4
b if Db > 25.4 mm

Subject to:

g1(X) =
φo

2 sin−1 (Db/Dm)
− Z + 1 ≥ 0,

g2(X) = 2Db − KDmin (D − d) ≥ 0,

g3(X) = KDmax (D − d) − 2Db ≥ 0,

g4(X) = ζBw − Db ≤ 0, g5(X) = Dm − 0.5 (D + d) ≥ 0,

g6(X) = (0.5 + e) (D + d) − Dm ≥ 0,

g7(X) = 0.5 (D − Dm − Db) − εDb ≥ 0,

g8(X) = fi ≥ 0.515, g9(X) = fo ≥ 0.515,

where

fc = 37.91

1 +


1.04


1 − γ

1 + γ

1.72  fi (2fo − 1)
fo (2fi − 1)

0.41
10/3

−0.3

,

γ =
Db cosα

Dm
, fi =

ri
Db

, fo =
ro
Db

,

φo = 2π − 2

× cos−1


{(D − d) /2 − 3 (T/4)}2 + {D/2 − (T/4) − Db}

2
− {d/2 + (T/4)}2


2 {(D − d) /2 − 3 (T/4)} {D/2 − (T/4) − Db}

,

(20)
T = D − d − 2Db,

D = 160, d = 90, Bw = 30.

0.5(D + d) ≤ Dm ≤ 0.6(D + d), 0.15(D − d) ≤ Db ≤ 0.45(D −

d), 4 ≤ Z ≤ 50, 0.515 ≤ fi ≤ 0.6, 0.515 ≤ fo ≤ 0.6, 0.4 ≤

KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ ε ≤ 0.4, 0.02 ≤ e ≤

0.1, 0.6 ≤ ζ ≤ 0.85.

C.6. Belleville spring

Minimize:

f (x) = 0.07075π(D2
e − D2

i )t

Subject to:

g1(x) = S −
4Eδmax

(1 − µ2)αD2
e

[
β


h −

δmax

2


+ γ t

]
≥ 0,

g2(x) =


4Eδ

(1 − µ2)αD2
e

[
h −

δ

2


(h − δ)t + t3

]
δ=δmax

− Pmax ≥ 0,

g3(x) = δl − δmax ≥ 0, g4(x) = H − h − t ≥ 0,

g5(x) = Dmax − De ≥ 0, g6(x) = De − Di ≥ 0,

g7(x) = 0.3 −
h

De − Di
≥ 0,

where

α =
6

π ln K


K − 1
K

2

,

β =
6

π ln K


K − 1
ln K

− 1


, γ =
6

π ln K


K − 1

2


,

Pmax = 5400 lb, δmax = 0.2 in., S = 200 kPsi,

E = 30e6 psi, µ = 0.3, H = 2 in., Dmax = 12.01 in.,

K =
De

Di
, δl = f (a)a, a = h/t.

Values of f (a) vary as shown in Table 7.
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